Which matters most: Party strategic exit or voter strategic voting? A laboratory experiment

Online appendix

Damien Bol (King's College London) André Blais (University of Montreal) Simon Labbé St-Vincent (University of Montreal)

	1 1				
		Series 1	Series 2	Series 3	Series 4
Session 1	Party positions	Uniform	Uniform	Central	Central
	Distribution of gains in alliances	Equal	Unequal	Equal	Unequal
Session 2	Party positions	Uniform	Uniform	Central	Central
	Distribution of gains in alliances	Unequal	Equal	Unequal	Equal
Session 3	Party positions	Central	Central	Uniform	Uniform
	Distribution of gains in alliances	Equal	Unequal	Equal	Unequal
Session 4	Party positions	Central	Central	Uniform	Uniform
	Distribution of gains in alliances	Unequal	Equal	Unequal	Equal
	<u> </u>			0.01 1	

Table A1: The sequence of experimental conditions by session

Note: There were four series per session. Each series was composed of five elections. There were thus 20 elections per session.

× · · ·	Model 2
	(empirical)
Marginal effects (standard errors)	
Uniform positions	0.04 (0.03)
Equal distribution	< 0.01 (0.03)
Extremeness of voters	-0.02 (0.01)
Number of alliances	0.04** (0.02)
Election	0.01 (0.01)
Series	-0.07 (0.05)
Session dummies	Yes
Chi ²	22.58***
Obs.	880
Predicted probabilities	
Uniform positions	82%
Central positions	77%
Equal distribution	80%
Unequal distribution	80%

Table A2: Predicting a viable vote, empirical definition

Note: Entries are marginal effects and predicted probabilities estimated with logit models. Standard errors clustered by subjects are in parentheses. They are calculated in setting all other variables at means. The dependent variable is whether the voter casts a viable vote or not (following the theoretical or empirical definition of viability). * p < 0.1, ** p < 0.05, *** p < 0.01 (two-tailed).

In Table 4 of the main text, we use a theoretical definition of the concept of viable party. As a robustness check, we replicate the analyses using an empirical definition of the concept of viable party. We consider as empirically viable parties the top two contenders in the election, that is, the two parties that obtain the largest number of votes. In case of a tie, we consider all the parties tied with the top two contenders as viable. Given the rather low number of voters, there are more than two viable parties in a bit less than 30% of the 80 elections. We run models predicting viable voting using either the theoretical or the empirical definition.

Voters vote for a viable party 79% of the time when we use an empirical definition. If all voters maximized their payoffs, this proportion should be 100%. However, our results show that many subjects engaged in strategic voting.

Table A2 reveals that the proportion of viable votes is higher under the uniform distribution of party positions. We see that the effect of this experimental condition is not significant. However, the predicted probability of casting a viable vote is 82%. This is a five percentage-point difference compared to the proportion of viable votes under the central distribution of party positions. This gives further evidence to H1.

We should mention that we could have taken another definition of strategic voting. In the literature, strategic voting is sometimes defined as voters that do not cast a sincere vote because this vote would not be viable, and opt for a viable party instead (Blais et al. 2001). These voters can be labeled as strategic deserters. However, this other definition would have forced us to concentrate on a subset of the electorate, and in particular on voters for which their sincere vote is not viable. In our experiment, this concerns only 33% of the voters per election on average, among which only 16% cast a strategic vote (using the empirical definition of viability explained above). Also, given the distribution of party positions, there are more potential strategic deserters under the central than under the uniform distribution (39% v/s 28%). For the

sake of comparability, between experimental conditions and between voters and parties, we decided not to use this definition.

Reference

Blais A, Nadeau R, Gidengil E, and Nevitte N (2001) Measuring Strategic Voting in Multiparty Plurality Elections. *Electoral Studies* 20: 343–352.